WACKERSILTRONIC

The use of magnetic fields in industrial growth of single silicon crystals

June 13, 2002 / Janis Virbulis

PERFECT SILICON SOLUTIONS

Outline

- Melt convection
- Why magnetic fields are used?
- Types of magnetic fields
- Wacker network of collaborations

The use of magnetic fields in industrial growth of single silicon crystals

Melt convection

Melt convection in large CZ crucible is turbulent (Gr about 10¹⁰ in 32" crucible)

- time dependent
- non-symmetric
- large fluctuations of velocity and temperature

The use of magnetic fields in industrial growth of single silicon crystals

Melt convection

Melt convection...

... can be influenced by:

- Rotation of crucible
- Rotation of crystal
- Argon gas flow rate
- Argon pressure
- Hot zone (heat shield) design

It's all !

 Heater Power is adjusted in manner to keep the required pulling velocity and crystal diameter

+ magnetic field(s)

Why magnetic fields are used?

- to increase the **yield**
- to fulfill the quality requirements

GfS Yield - Good for Structure (dislocation free part)

Reason of dislocations: stress limit exceeded at interface Reason: - particle incorporated in crystal

- temperature fluctuation

(larger crucibles - larger fluctuations)

GfO Yield - Good for Order (part which corresponds to customer requirements)

WACKER SILTRONIC

The use of magnetic fields in industrial growth of single silicon crystals

Why magnetic fields are used?

Quality measures

Dopant distribution

- concentration (increases during the growth of crystal)
- radial variation (thickness of concentration boundary layer on interface)
- striations (temperature and flow fluctuations at the growth interface)

Oxygen distribution

- concentration (very complex behavior)
- radial distribution (flow near the crystal no boundary layer on the interface!)
- striations (flow fluctuations in the bulk)

Distribution of point defect agglomerates

- type of defects (depends on temperature gradient on the interface)
- size and density (no direct dependence on melt flow)

Steady magnetic fields

j~v×B

Transversal

Early 70's

Early 80's

End of 80's

WACKERSILTRONIC

The use of magnetic fields in industrial growth of single silicon crystals

Advantages of steady magnetic fields

- •Reduction of temperature fluctuations
- Influence of oxygen concentration (lower oxygen)

Disadvantages of steady magnetic fields

- Higher crucible temperature (corrosion)
- Lorenz force coupled to velocity, instabilities can appear
- Axial field: insufficient radial dopant and oxygen homogeneity
- Transversal field : striations due to non-symmetric flow and temperature field

Time-dependent magnetic fields

j ~ ω**B**

Rotating field

Influence like to time-dependent field

EMCZ

WACKERSILTRONIC

Combined field

Travelling field

The use of magnetic fields in industrial

03-Jul-2002 Folie 11

growth of single silicon crystals

Effect of magnetic fields

Effect of magnetic fields

The use of magnetic fields in industrial growth of single silicon crystals

WACKER SILTRONIC

Advantages of time-dependent magnetic fields

- •Flow is influenced actively, totally different flow patterns possible
- Influence of oxygen concentration (higher oxygen)
- Lower crucible temperature
- At least 10 x lower field intensity as for steady fields
- Lorenz force independent on flow velocity

Disadvantages of time dependent magnetic fields

• Higher flow velocities (but more stable than buoyancy)

Wacker network of collaborations

Melt flow related collaborations

Summary

• Magnetic fields are good instrument for yield and quality improvement for 300 mm crystal growth

Alternating, combined and travelling magnetic fields are used for 300 mm crystal growth

• Successful implementation of new magnetic fields was possible only in team with our collaborations

The use of magnetic fields in industrial growth of single silicon crystals